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Accuracy Bounds for Semidiscretizations 
of Hyperbolic Problems 

By Rolf Jeltsch and Klaus-Gunther Strack 

Abstract. Bounds are given for the error constant of stable finite-difference methods for 
first-order hyperbolic equations in one space dimension, which use r downwind and s upwind 
points in the discretization of the space derivatives, and which are of optimal order p = 
min(r + s, 2 r + 2, 2 s). It is known that this order can be obtained by interpolatory methods. 
Examples show, however, that their error constants can be improved. 

1. Introduction. We consider the linear, one-dimensional test problem 

(l~~l) A~t = X -x -% < X < X, t >' O. u (x , ) given. 

We shall analyze semidiscretizations of (1.1) of the form 

(1.2) atk(t) = A E ajUk+j(t), t > 0, a j=-r 

uk(O) given for k E Z, 

where uk(t) is an approximation of u(k Ax, t), k e Z, and Ax is the steplength in 
space direction. The differential-difference equation (1.2) is said to be of the class 
{r, s} [4]. Let 

2 
00 

2 

I1u*t11 := AX Y. IUktI. 
k=-oo 

The system of differential equations (1.2) is said to be stable if there exists an 
estimate 

(1.3) 11utl2 C(t),,u(0)112, 

where C(t) is a function which is bounded independently of Ax and u; see, e.g., (1]. 
It is well-known that, using the Fourier transform, the stability of (1.2) is equivalent 
to 

(1.4) Rep(z) < O for lzl= 1, 

where 

(1-5) p(Z):= E atjzi,9 
j=-r 
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the characteristic function of the semidiscretization used in (1.2) [1], [4], [10]. The 
approximation (1.2) of (1.1) has order p and error constant cp+1 if, for all sufficiently 
smooth functions y(x), one has 

(Ax a1 jy(x +jAx) -y'(x) 
(1.6) j=-r 

= cp+?(Ax) y(P1 )(x) + O(iAxiP+1), Ax -* 0. 

In [4] it has been shown that, for stable systems (1.2) of class { r, s }, the order 
cannot exceed min{2r + 2, 2s, r + s }. For s = 1, this result has been given in [11], 
while [1] has treated the case r = 0. In [4] stable systems (1.2) have been given which 
attain the highest possible order. These systems have been called interpolatory 
methods, and the coefficients aj have been given explicitly. 

From (1.6) it is clear that these interpolatory methods correspond exactly to the 
linear multistep formulas based on differentiation as presented in [3, pp. 206-209]. 
We shall prove the following: 

THEOREM 1. Let the differential system (1.2) be stable and of optimal order 
p = min{2r + 2,2s, r + s }. Then the error constant cp+ satisfies 

(1.7) (-lIr+1c r1 > (!(r + 2)! fors > r + 2; cP '(2 r ? ) 

(1.8) c+1 = (-l)s l r !s! if r < s < r + 2; 
(r ? s ? 1)! 

(1.9) (-1)5 ?p+1 > (S!)2 forr > s.. 
(2s ? 1)! 

(1.8) and (1.9) have already been shown in [4]. (1.8) and equality in (1.9) are 
obtained by interpolatory methods. (1.8) and (1.9) say that for a fixed s and r > s 
the error constant is minimal when r = s. However, if one fixes r and has s > r + 2, 
the situation is different. The bound (1.7) is 1/(2r + 4) times smaller than the error 
constant cp+1 for s = r + 2. This suggests that for a fixed r one can possibly 
decrease the error constant by increasing s. In Section 3, we shall give examples of 
such improvements on the error constant. 

To prove the main result, we introduce a comparison technique. First, we adapt 
the theory of order stars in Section 2. Then, in Section 3, we prove properties of the 
"optimal semidiscretization" and compare any stable discretization to this one. 

In practice, the most convenient approximations to (1.1) are explicit, with a fixed 
ratio j, = A t/Ax: 

S 

(1.10) Ukfn+l 
= Y aJUk+?jf, 

j=-r 

where Ukfn is an approximation to u(k Ax, n At). The order p and the error constant 

Cp+ 1 are defined by 

u(O, At) - 1 aju( jAx, 0) 
(1.11) j=-r 

= up~l z +1 (0,0)(AX)p 1 + o(IAXIp2), 



SEMIDISCRETIZATIONS OF HYPERBOLIC PROBLEMS 367 

where we have used ut = UX and At = [ Ax. Let cp be the error constant of the 

semidiscrete scheme which is the "derivative" of the above fully discrete scheme; see 

[6, p. 783]. Then one has 

(1.12) C = P+ ?L + O([L2), I 0 +. 

Since Theorem 1 gives bounds for cp+1, one obtains bounds for Cp+ of the fully 

discrete scheme, at least asymptotically, for u -* 0 +. 

2. Order Stars. Order stars have been introduced by Wanner, Hairer and N0rsett 

[12] to prove stability results on methods for solving ordinary differential equations. 
In several papers this technique and related ideas have been used to investigate 

stability of numerical methods for finite-dimensional systems of ordinary differential 
equations which originate from the semidiscretization of ut = ux, x E [a, b], t > 0, 
or the wave equation; see, e.g., [2], [7], [8], [9], [13]. In [4] and [6] variations of the 

order star technique have been developed to treat stability of semi- and full 

discretizations of (1.1). For a bibliography, see [5]. In this section, we shall modify 
the order star technique of [4] so that it can be used to compare stable semidiscreti- 
zations to the "optimal" one in Section 3. 

Let 

(2.1) p(z):= E aljzi 
j=-r 

be the characteristic function of a semidiscretization. Clearly, one has order p and 
error constant cp+ 1 if and only if 

(2.2) P(Z) = logz + cp+?(z - 1)p+l + o(Iz - 11p+2) asz - 1 

(see, e.g., [3, p. 227], [4, p. 56]). Since we can express the stability of a scheme, its 
order, and its error constant in terms of p(z), we shall talk henceforth of rational 
functions only. We shall say that p(z) is stable if 

(2.3) Rep(z) < 0 for lzl = 1, 

and p(z) has order p and error constant cp+1 if (2.2) holds. We shall also consider 
functions of the form 

(2.4) Ip(z) k(z) 2 I (Z) 
(z?+1) z?+1 

where &j are real coefficients. The notions of order p and the error constant cp+1 for 

qp are now introduced in exactly the same way as for p; one just replaces p in (2.2) by 

qp. The stability condition (2.3) is replaced by 

(2.5) Re qp (z) = Re 2A(z) < 0 for IzI = 1, z 0 -1. 

We shall prove the bound for the error constant by comparing the characteristic 
function p with a function qp(z) of the form (2.4). This is done by considering the 

difference 41(z):= p(z) - qp(z). Observe that if p and qp are both of order at leastp, 
then the difference 4 (z) has a root of multiplicity at least p + 1 at z = 1; i.e., 

(2.6) 4i(Z) = P(Z) -_ (Z) = c(z - 1)p+1 + o(Iz - 1Ip+2). 
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We introduce 

(2.7) S(z):= e4+(z), z E C, 
and 

(2.8) Q := { z G Cl {S(z)l> 1}. 

S is called the order star. Qc will denote the complement of Q: i.e., Qc = C\\Q. Since 
aj and &j are always assumed to be real, Q and Qc are symmetric with respect to the 
real axis. 

FIGURE 1(a) 

Order star of 4i:= (z -1)-2~(Z -1)2-2(z-l)/(z ? 1)for-3 < 

Re z < 3 and -2 < Im z < 2 

FIGURE 1(b) 

Order star of#A1 := -4 --+ 2 Z - 1 z2 * -- 6( --z+- 

for -3 < Re z < 3 and -2 < Imz Z 2 
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As examples we draw the order star belonging to the interpolating function in 
class {0, 2} compared with the function of type (2.4), with r = 0, s = 2, that has 
optimal error constant (see Figure 1(a)), and the order star of the interpolating 
function in class {1, 3} compared with the function of type (2.4), with r = 1, s = 3, 
that has optimal error constant (see Fig. 1(b)). 

Observe that in [4] the order star was formed by comparing p to log z: i.e., by 
forming A (z) = p(z) - log z and thus 

S(z) = eP(z)/z. 

However, we shall not need this type of order star, and thus we restrict ourselves to 
functions 4 of the form (2.6). 

We shall need the following five lemmas, which are minor modifications of 
properties given in [4]. We shall therefore omit the proofs. Let D denote the unit disk 
D = {z E Cl Izi < 1}. 

LEMMA 2. Let Q be the order star of 4,(z). Then 

(2.9) Re ,(z) 0 forJzJ=1,z#-1 

if and only if n aD= 0. 

LEMMA 3. Let Q be the order star of 4(z). Let 4(z) have a pole at zo of order r. 
Then, as z tends to zo, Q consists of r sectors of angles 7T/r adjoining zo, separated by r 
sectors of Q' adjoining zo of the same angles 7T/r. 

We shall need this lemma for z0 = -1, where A, given by (2.6), usually has a 
simple pole, and, for z0 = 0, where 4 has a pole of order r if a_ -2&_r 0. 

LEMMA 4 [4]. Let Q be the order star of 4i(z). Then 4(z) has a root of multiplicity 
p + 1 at z = 1 if and only if, as z tends to one, Q consists of p + 1 sectors, each of 
angle 7T/( p + 1), separated by p + 1 sectors of Q'. each of the same angle. 

For 4(z) with (2.9) one can, in view of Lemma 2, introduce the 
Definition. 4i and 40 denote the number of sectors of Q, inside and outside D, 

respectively, approaching z = 1. 

LEMMA 5. For every 4,(z) with (2.9) and a root of multiplicity p + 1 at z = 1, one 
has pi + JL0 = p + 1, pi - ol < 1, andp < 24i. 

Finally, we shall need the following lemma, which is part of Proposition 8 in [5]. 

LEMMA 6. Let Q be the order star of 4,(z). Between any two points with 4,(z) = 0 
that are connected by an arc of a3 there is an essential singularity on this arc. 

3. Accuracy Bounds. In this section we use the tools developed in Section 2 to 
prove the lower bound (1.7) for the error constant given in Theorem 1. To do this let 
us first derive a special function pr(Z) of the form (2.4). Observe that by 

(3.1) p(z) - z(z) = log z + cp+?(z - I)P+l + O( z - 

21(z+ 1 

one has 

(3.2) zj+r - -(Z + 1)zrlog z = cp+?(z - 1) + O(z 11p) 
j=-r 
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for z -+ 1. Hence, if p > r + s, then 
r+s 

zrA(Z) = E br(Z 
_ 

) jg (3.3) Zpz) j~z-1' 
j=1 

where 
1 00 

(3.4) (Z + 1)Zrlog z = E br(z -1). 

In particular, for s = r + 1 there is a unique 
r+1 2r+ 1 

(3.5) zorp(z):= E frZj+r:= = bJr(z -)' 
j=-r j=1 

and 

(3.6) (Pr(Z) = 2pr(Z)/(Z + 1), 

such that p > 2r + 1. Substitution of I/z in (3.1) gives 

-2Er1 frjZj 

(3.7) 
( Z z +1 

= logz - c +?(-1)P+1(z - 1)Pl + O(IZ - ). 

Thus -Pr(l/Z) has order at least 2r + 1. By the uniqueness of (Pr(Z) we have 

(3.8) cPr(Z) =-gr(llz) 

and thus 

(39) f3r = -pif_j forj = -r, -r + 1,...,r + 1. 

We show now that (Pr(Z) has orderp = 2r + 2 and error constant 

(3.10) X ( 1) r+ 1 rr!(r + 2)! (2 r + 4)! 

At this point it is helpful to observe that, by (3.2), (pr(Z) corresponds to the 
difference operator 

r+1 Ax 
(3.11) (LAXy)(x) = E fPrY(X + j/x)- 2 (y'(x + Ax) +y'(x)) 

j=-r 

= Xr(AX) y(P+l)(X) + ?(|AX p+2) 

see, for example, [3, p. 227]. Clearly, by the symmetry (3.9), the order p has to be 
even. Thus p > 2r + 2. To compute the error constant X r let Ax = 1 and 

r+ 1 

9(x) = x H (x -j). 
j= -r 

Hence, substitution in (3.11) gives 

( L1-)(0) = -2(9'(1) + 9'(0)) = -'(1) 
- 'r!(r + 1)!(-1) = Xr(2r + 3)!. 

This establishes (3.10). 
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Finally, we establish that cpr satisfies (2.5). Let Izi = 1, z # -1. Hence, by (3.8), 

(Z ) (= ( =Y) 
= r (l/Z) = )r (Z) 

and therefore Re (pr(Z) = 0 for Izi = 1, z # -1. We have, therefore, established the 
following 

PROPOSITION 7. The function 9pr(z) = 2pr(z)/(z + 1) given by (3.5) has order 
p = 2r + 2 and error constant Xr = (_1)r+lr!(r + 2)!/(2r + 4)!. The function qPr(Z) 
satisfies (2.5), in fact, Re Pr(Z) = 0 for IzI = 1, z + -1. 

We give the coefficients 3Jr of pr(Z), r > 1, without proof: 

( r +2 
1 2(r + 1)' 

(3.12) 1a r I (-l)jr!(r + 1)! = 2,3 ... r + 1 
I i 2 (r +j)!(r + 1 -j)!j (j-1) j 1, 

fPr = -_3 j = -r, -r + 1, ... .,-1, 0. 

For r = 0 we have the trapezoidal rule 

(Po = 2(z - 1)/(z + 1). 

A subset Al of Int(Qc) is said to be an Qc-component if Ml c a~c and A1l is 
connected. U-components are defined similarly. 

LEMMA 8. Let i (z) be given by 

(3.13) A(z) = 2 j -r 
Z + 

For any bounded 9-component Q1 one has 

(i) {-1} nl, 0 if r = 0, 
(ii) {0,-1} n K1 * 0 if r>0. 

The same is true for Q A-components. 

Proof. Let r > 0 and let Q1 be a bounded a-component with {0, -1) C = 0. 
Hence, S(z) is analytic in an open set W D Q1. Hence, IS(z)l = 1 for z E al,, and 

jS(z)l > 1 for z E Q1. Since S(z) is not constant, we have a contradiction to the 
maximum modulus principle. Hence, {0, -1) nl # 0. 

For r = 0 observe that z = 0 is also a regular point of S(z). 
For Qc-components one proves the lemma in a similar fashion by considering 

I/S(z) instead of S(z). D 
For brevity we shall henceforth abbreviate "sector of 92 at z = 1", as used in 

Lemma 4, by "finger ", and "sector of Qc at z = 1 ", by "dual finger ". In the 
following we shall bound pi, i.e., the numbers of fingers in D. As a first step we have 

LEMMA 9. Let 4i(z) in (3.13) satisfy (2.9). 
(a) An 9-component in D has at most two fingers. 
(b) At most one ?-component in D has two fingers. 

Proof. Since we work in D only, we shall not always restate this. 
(a) Assume ?1 is an ?-component with more than two fingers. Hence, there are at 

least two dual fingers in D which belong to two disjoint bounded EY-components A1, 



372 ROLF JELTSCH AND KLAUS-GUNTHER STRACK 

A2 which cannot have -1 on their closures. Since Al and A 2 are separated by Q1, one 
of them cannot have the origin in its closure. This is a contradiction to Lemma 8. 

(b) Assume there are at least 0-components 01 and Q22 with two fingers each. Since 
01 and Q22 are connected and Q1 n 22 = 0, the fingers of 1, Q22 cannot interlace 
each other when moving on a small circle around z = 1. Hence, between these four 
fingers there are at least two dual fingers in D which belong to two disjoint bounded 
QC-components which cannot have -1 in their closures. As in the proof of part (a) 
this leads to a contradiction. O 

PROPOSITION 10. Let 4'(z) = 2EJ= -rajz'/(z + 1) satisfy (2.9). Then for the num- 
ber of fingers inside D one has 
(3.14) ii < r + 1. 

Proof. Let r = 0. Hence, z = 0 is a regular point. Inside D we have at most one 
0-component, 01 say, with z = -1 on its boundary. Assume now that this compo- 
nent has at least two fingers. Then these two fingers enclose a bounded Qc-compo- 
nent A1. Since 2il n {-1} = 0, this contradicts Lemma 8. Hence, pi < 1. Next, we 
consider the case r > 0. Here we distinguish the following two cases: 

(i) No finger in D belongs to an 0-component which has -1 on its boundary. 
Then, by Lemma 3, there are at most r 0-components in D which do not have -1 on 
their boundaries. Thus, by Lemma 9, one has pi < r + 1. 

(ii) The component 01 which has -1 on its boundary has at least one finger. Since 
0 4 Int 01, and because of the symmetry of Q with respect to the real axis, Q1 has 
exactly two fingers. Now 01 is either connected with one of the U-sectors at z = 0 
and, by Lemma 9, pi < 2 + (r - 1) = r + 1, or the inner boundary of 01 is 
singularity free, which contradicts Lemma 6. 0 

In the proof of the main theorem, pr plays an important role. It is, as we shall see, 
the most accurate function, although not stable itself since it is not defined at 
z = -1. We now have the tools to prove the part of Theorem 1 not covered in [4]. 
For convenience we restate it here as 

THEOREM 11. Let s > r + 2 > 2. Let the differential system (1.2) of class { r, s } be 
stable and of optimal order p = 2r + 2. Then one has for the error constant C2r+3 the 
lower bound 

(3.15) (_)r+ c2r+3 > r!(r + 2)! = 1XrL (2r + 4)! 

Proof. By p we denote the characteristic polynomial of the method in considera- 
tion, having order 2r + 2 and error constant c2r+3. We now define 

i(Z):= P(Z)- r(Z) 

(3.16) = (C2r+3 - Xr)(Z 2')23 + (0z - I2r?4)- 

Re 4+(z) = Re(p(z) - (pr(z)) < 0 for Izi = 1, z # -1, since p is stable and because 
of Proposition 7. Thus p satisfies (2.9). We distinguish two cases. 

(i) r even. Assume (3.15) is wrong. Hence, C2r+3 - Xr > 0. Proposition 10 implies 
that pi < r + 1. Hence, by Lemma 5, C2r+3 - Xr = 0 is impossible. If C2r+3-Xr > 

0, we have that, for E > 0 small enough, 1 + E E Q and 1 - E E Q2c; hence, by 
Lemma 5 and (2.9), one has pi = r + 2. This is a contradiction. 
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(ii) r odd. The assumption C2r?3 = X r yields a contradiction as before. If Xr > C2r+3, 

we have that, for e > 0 small enough, 1 + e E Qc and 1 -E Ec Q; hence, by Lemma 
5 and (2.9), one has ,i = r + 2. This is a contradiction to Proposition 10. 0 

We remark the following: 
1. Since the error C2r+3 is bounded away from zero, we have at the same time 

found another way to prove the maximal order p < 2r + 2 for functions p in the 
class { r, s }. Clearly, one can give a similar proof for p < 2s. 

2. Contrary to the case when s is fixed and an arbitrary number of points to the 
left is taken (cf. [4, Theorem 6]), we here get an improvement in the error constant of 
a stable method when taking more points to the right and determining coefficients aj 
in a suitable way. This also reflects once more the asymmetric behavior of the 
advection equation. 

We gain most of the possible improvement of the error constant when taking only 
one or two points more than in the interpolatory method with s = r + 2. 

Next we give some examples for the improvement of the error constant. By c(r, s) 
we denote the (absolutely) smallest error of a stable function of class { r, s } with 
maximal order p = mint r + s, 2(r + 1), 2s }. 

Example 1. For order p = 2r + 2, one must use at least r downwind and r + 2 
upwind points; consider, e.g., the interpolatory methods. Here we show that already 
adding one point more on the upwind side results in an essential improvement of the 
error constant. When approximating log z by stable functions of the type 

r + 3 

p(z) E, ajz' 

(3.17) j=-r 

- 1) (Z -12? 

1=1' +a withorderp=2r+2, 

we first consider the Taylor series of Zr log z at z = 1, which is given by 
00 

z rlog z = E aJ(z -1)' 

where the aj are recursively given by 

{ar:= ?, 

(3.18) t a1 := j+ ((0) +(r-ja), =0,1,... ,r, 

ar a j r j > r. 

To get order p = 2r + 2, we must choose, analogously to (3.5), a1 = a)r for 1 < j < 

2r + 2. Hence, the characteristic function of semidiscretizations (1.2) of class 
{r, r + 3) oforderp = 2r + 2have the form 

2(9) r(Z - 
1)' 

(Z - 
1)2r?3 (3.19) p(z,, a):= 

a________ 
a 

( 
I r +a *=1 Z Z 

J= 1 

p(z, 0) belongs to the interpolatory method. It is stable and has error constant 

(3.20) C2r?3 = (-1)r?1 ( + 2)! - c(r, r + 2). C~r+3 = 
I(2r + 3)! 
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Clearly the error constant of p(z, a) is 

(3.21) c(a) = C2r?3 + a. 

In the following, we show that one has to choose 

(3.22) a = a* (-)rr!(r + 2)! 2r + 3 

in order that p(z, a*) is stable and 

(3.23) c(a*) = c(r, r + 3), 

i.e., p(z, a) is unstable for all a with lc(a)l < lc(a*)I. Since p(z, 0) is stable, it is clear 
from (3.20) and (3.21) that one gets an improvement of the error constant compared 
to c2r+3 if 

(3.24) (-1)ra > 0. 

Clearly, 

(z -1) 2r?3 

p(z, a) - log z = p(z,0) - logz + a Zr 

(3.25) 1 - L r(Z (z 2r+3 

Zj=2r+3 

By a simple but tedious calculation we obtain, using (3.25), (3.18), and the fact 

a2r+3 = -C2r+3, that 

(3.26) Rep(e i, a) - Re(p(e'6, a) - loge"6) = AO2r+4 + Q(92r+6), 

where 

(3.27) (()a r!(r + 2)! 2r +) 2 

Hence, from stability, we have the necessary condition A < 0, which is equivalent to 

(3.28) (1) ra < (-1) ra*. 

Since a*1 < IC2r+31 ?we see from (3.21) that the (absolutely) smallest error constants 
of all p(z, a), with (3.28), is obtained for a = a*. It remains to show that p(z, a*) is 
stable. To do this, observe that 

Rep(ei ,a*) Re rar(z + a r* (Z- j 

r+3 

-E djcos jO 
j=O 

for some real coefficients dj. With the transformation x = cos 9, 9 E [0, 7T], we 
obtain 

r+3 r+3 

(3.29) Rep(e'i, a*) = E d.T.(x) = 8(x - 1)j =:T(x), 
j=O j=O 

where Tj(x) are the Chebyshev polynomials. We substitute x = cos 9 in (3.29) and 
expand with respect to 9 at 9 = 0. Comparing this expansion with (3.26) for a = a* 
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yields So = = = *2 = 2 = 0. Hence, 

T(x) = (x - 1) r?338?3 

and thus T(x) does not change sign in (-1, 1). Therefore, Re p(e'6, a*) has constant 
sign for all 0 E [0, 2v ]. However, 

Re p(-1, a*) = Re p(-1, 0) + a* - 22r+3(_1) r+l < 0, 

since Re p(-1, 0) < 0 by stability of p(z, 0). Hence, the method p(z, a*) is stable. 
We have thus proved the following 

THEOREM 12. Among all stable differential-difference equations (1.2) with r down- 
wind and at most r + 3 upwind points and of optimal order p = 2r + 2 the one with the 
characteristic function p(z, a*) given by (3.19) and (3.22) gives the smallest error 
constant in absolute value. The value of the error constant is 

(3.*30) c( a*) = (_1) r+ r!(2r + 2)! r + 3 

The value of c(a*) is obtained by substitution of a* in (3.21). We observe that 

c(r, r + 3) = . c(r, r + 2). 3r + 6 

Hence, adding one upwind point results in a decrease of the error constant by at 
least a factor 2, and at most a factor 3. We list for r = 0, 1,2, 3 the values 
c(r, r + 2), c(r, r + 3) as well as the bound c(r, o) := Xr of the error constant for 
formulas with arbitrary large s. 

r p c(r, r + 2) c(r, r + 3) c(r, oo) 

0 2 
- 

o1 2 41 1 -1 1 1 
1 1 4 

20 45 120 

1 1 1 
2 1 6 -105 252 840 

3 1 8 1 1 
1 1 1 

3 8 ~~~~504 1260 5040 

For the resulting functions p(z, a*) we can also give the coefficients as follows: 

a( (1)j+1 r!(r + 1)! _ r + 2 2r + 3 
(r +j)!(r + 2-j)! 3(r + 3-j)- 

-r < j < r + 2, j # 0, 

(3.31) _ (1 + 1 + 2r + 3 

ao + 3 = + 1 )r( + 2 (r + 3)(3r+6) 

ar+3 
r ~r!(r + 2)! 

ar+3 
(-l(2r + 2)!(3r + 6) 
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Example 2. Error constants of stable methods in the purely upwind case r = 0 for 
different values of s: 

s 2 3 4 

C3 -0.3333 -0.1667 -0.1262 -0.0833 

al 1.000 1.000 1.000 1.000 

a2 -0.500 -0.500 -0.500 -0.500 

a3 - 0.1667 0.2071 0.250 
a4 - -0.0732 -0.125 

The coefficients result from the transformed nonlinear system of equations in (1.4) 
with the side condition to "minimize" C3. 
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